お知らせ 成長し続けるエンジニアを支援するサービス「Forkwell」と勉強会プラットフォーム「connpass」が連携し、connpass上で開催されるITエンジニア向け勉強会の懇親会への支援を拡大いたします。詳しくはこちら

このエントリーをはてなブックマークに追加

3月

24

IoT寺子屋:深層学習の数学勉強会(1)_演習分厚版_0324

寺子屋でAI始める前の準備勉強会です。無料参加含めて3人以上の参加者いれば実施します。

Organizing : IoT寺子屋

Registration info

一般枠(名称あらため)

3500(Pay at the door)

FCFS
3/4

過去にIoT寺子屋でIMUセンサでデジタルツインしちゃうよんを受講された方

Free

Standard (Lottery Finished)
0/1

Description

IoT寺子屋:深層学習の数学勉強会(1) 土日演習分厚版 
&(2/25および3/8,3/22)平日参加の人にも
終了後質問タイム(17:00-)設けます^^

【今回はマイコンボードも部品もパソコンもないハンズオン=ノートに鉛筆で】

ただしExcelを用いた演習も最後に入れますのでパソコンをお持ちください・・・

【まず値段と人数枠の件ご説明】2/25と3/8,3/22の講座と内容はほぼ同じですが、 土日で時間は長いものの小さな部屋しかとれなかったため 募集人数も少なくなり、少し値段上げさせていただきました。(=場所代ととんとん) ただし演習を増やして値段の差分を感じてもらえるようにします
なお今後土日演習分厚い版を実施するときは10人規模開催の時も3500円を設定する予定です。

部屋にホワイトボード入れると4人しかはいりませんが かって実施したデジタルツインに参加していただいた方は 土日しか都合つかない方多く、二人までご招待します。 抽選日すぎてこの枠がうまらなかったら一般枠増員します。

無料参加含めて3人以上の参加者いれば実施します。

(習得スキル)

・AIの学習の動作原理を数式できちんと理解します。  (FNN,CNN,RNNすべてに共通なこと)

・AIの論文がとりあえず読めるようになる(目標)

前提知識は高校の数学をだいたい思い出せるくらいです 最近は高校で行列の計算ををやらないようなのでそこはしっかりご説明する予定

【実習アジェンダ】

■Timeスケジュール

時間 内容
11:00 - 11:30 受付
11:30 - 11:50 フィジカルコンピューティング
 ・フィジカルコンピューティングとは何か?
 ・AI・ビッグデータ・IoTの関係
 ・非構造データの活用の現在
 ・センサーデータがもたらす可能性
 ・本日の講座のカバー範囲
11:50 - 12:10 確率分布・情報量とシャノンの符号化・クロスエントロピー・KL情報量
12:10 - 12:30 6面体サイコロと8面体サイコロを使ったKL情報量の計算実験
12:30 - 13:30 お昼休憩 (近くのコンビニでご休憩や会場のお店でのランチもOKです
13:30 - 14:00 偏微分・行列の計算
13:30 - 14:00 偏微分・行列の計算の演習
14:00 - 14:50 AIの推論(順伝搬)
14:50 - 15:00 休憩
15:00 - 16:30 AIのパラメータ補正の一連の手続きとそれを支える基本的な考え
 ・オンライン学習/オフライン学習/ミニバッチ学習の考え方
 ・確率的勾配降下法
 ・誤差逆伝搬法
16:30 - 17:00 PYNQの紹介&FPGAの紹介
17:00 - 18:00 お店の一般席に移動⇒質問タイム
他の会に参加された方も可
1ドリンク頼んであげてください

※一応17:00まで場所は確保できています

※2/25および3/8に参加された方で帰ってからよくわからんかった・・・・という方はこの日の17時にこちらにいらしていただければリアルにご質問お受けします。
=無料です。(平日しかどうしても会場見つけられず&&内容がやや重いのに十分な時間がとれなかったので・・・)
 But お店なので1ドリンク(フードでもいいですが)は頼んであげてください
 どなたか質問がつづいている場合は閉店まで どなたもいなくなったら18:00以降なら帰ります^^

場所は銀座線田原町駅の目の前、浅草めぐりを兼ねていらっしゃいませんか

【配布物】

•講習資料(紙ベース。カラーで図解した資料と白黒の問題集のようなもの)※資料は手書きノートも含みます。

ノートのもととなった本もありますので受講者にはご紹介します。

お持ちの方は持ってきていただけるといいかもしれません(なくてもいいようにしています)

【参加者にお持ちいただくもの】

•ノートと鉛筆

【テーマ選定のポリシー】

IoT寺子屋は普段電子工作でガジェットを作るハンズオン提供してます。 しかしながらセンサーデータ集めてくるだけではなかなか有益な仕事ができないと考えます。

学習済みのAIモデルが自由に落としてきて使えるという今日このごろ AIを組み込みエッジに乗せてなんかつくるということがまさに現実化してきました しかも大企業でなくても個人でできる・・・そんな時代

さてオリジナルなアイデアをAIの分類器にかけようとすると どうしても学習をさせる必要が出てきます

どうやってデータを作るんだろう・・・どうやって学習させるんだろう・・・

このAIの数学は3回ほどに分けて実施しようと思っていますが

まず (1)は教師データはそろってるものだと思ってパラメータ調整の ロジックを学びつくす

次回(2)は教師データの作り方(これはオープンcv使う予定)とCNNの説明(実装はまだしません)

最終回はRNNとGANをしようとおもいます。

いままで寺子屋いらした方は知ってらっしゃると思いますが ほんとに解説しつくすので 電子工作しないひとにも十分にまなんでもらうことがあります。

Kerasで1行・・・・でないAIをきちんと学ぼう・・・・という趣旨です。

しっかり理解していただけるように説明していきます。 後半の逆誤差伝搬が深層学習の本質です。・・・がAIの会社の人間でもうまく説明できない人がいます。 これをきちんと理解すると自分で深層学習のコードが組めると思います。

なおこれを3つ受けた後にPythonでうごくFPGAボードへのパラメータ送り込みを実行する勉強会を予定しています

【講師自己紹介】

大邦将猛(おおくにまさたけ) 生産管理/在庫管理コンサルタント。技術士(経営工学)。

京都大学工学部/大学院工学研究科卒業。(専攻 原子核工学。学部と修士課程) 大手製造業で生産工程の研究員5年 ベンチャーITベンダー6年(半年スウェーデン在住勤務)  コンサルティングファーム3年(一年オランダ在住勤務) 大手ITベンダー10年勤務

数学は趣味で卒業後もこつこつ問題解いたりしてます。 学生時代に一番頑張った勉強は量子力学や場の量子論といった物理学です。卒論や修士論文も核物理学の内容(QED/QCD)でした。 (微積線形代数やテンソル、量子力学の勉強会も考えたのですが、  すでにたくさんあるしすぐに仕事で役立つように思えないのでこんな内容にしてます)

数学と物理については塾などで難関目指す生徒用のコースから、中学生補習講座まで担当していた経験があります。 教え方がうまいかどうか・・・わかりませんが、東大などの難関に受かった生徒もいるし、 躓いた人が何がわかってないかを判断できると思いますのでハンズオンをコーチャー的にできればと思います。

【お問い合わせ】

当ページの問い合わせ先リンクからお願いします。 会場のお店には連絡なさらないでください(場所をお借りしているだけです)

Feed

大邦将猛

大邦将猛さんが資料をアップしました。

03/26/2019 09:44

大邦将猛

大邦将猛 さんが書き込みました。

2019/03/24 11:07

いま携帯の電池が落ちてて申し訳ありません。もう開催場所で待ってますのでどうぞいらしてくださいませ 飛び入り後二ー三人だいじょうぶです

大邦将猛

大邦将猛 さんが書き込みました。

2019/03/23 21:49

子内容✖→来ないよう でした

大邦将猛

大邦将猛 さんが書き込みました。

2019/03/23 21:49

yot18さま 失礼しました。こちらの書き込みはメール通知子内容で気づきませんでした。その時点では申込者があふれてたので当日をまってたのですが今後ぎりぎりまでにします。

yot18

yot18 さんが書き込みました。

2019/03/19 19:14

募集期間が終わっているので申し込みができません。

大邦将猛

大邦将猛さんが資料をアップしました。

03/15/2019 00:29

大邦将猛

大邦将猛さんが資料をアップしました。

03/14/2019 22:55

大邦将猛

大邦将猛 published IoT寺子屋:深層学習の数学勉強会(1)_演習分厚版_0324.

02/25/2019 02:09

IoT寺子屋:深層学習の数学勉強会(1)_演習分厚版_0324 を公開しました!

Group

IoT寺子屋

きちんとわかる。いきのながい技術をお伝えします。

Number of events 16

Members 155

Ended

2019/03/24(Sun)

11:00
17:00

開催日時が重複しているイベントに申し込んでいる場合、このイベントには申し込むことができません

Registration Period
2019/02/25(Mon) 06:00 〜
2019/03/24(Sun) 11:30

Location

レンタルスペース&カフェ なごむ

東京都台東区寿2丁目10番11号(仙石ビル3F)

Organizer

Attendees(3)

e310xx

e310xx

IoT寺子屋:深層学習の数学勉強会(1)_演習分厚版_0324 に参加を申し込みました!

to1931

to1931

IoT寺子屋:深層学習の数学勉強会(1)_演習分厚版_0324 に参加を申し込みました!

watanabek3

watanabek3

IoT寺子屋:深層学習の数学勉強会(1)_演習分厚版_0324 に参加を申し込みました!

Attendees (3)

Canceled (5)